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Abstract. O(α) QED radiative corrections to neutral current deep inelastic production of heavy quarks
are calculated in the leading log approximation and compared with the corresponding corrections assuming
a massless charm parton. Besides the inclusive case, corrections to the semi-inclusive d3σ/dxdydz and the
effect of z-cuts are studied. In the latter case, the massless corrections differ from the correct massive
radiative corrections to deep inelastic heavy quark production by about 40%–10% for 0.2 . z . 0.5.

1 Introduction

Deep inelastic production of heavy quarks at HERA is
important for several reasons:

– At small x (x ≈ 10−3) the charm contribution F c
2 to

F ep
2 amounts to 20%–30% [1] making a reliable theo-

retical treatment of F c
2 necessary for a precision mea-

surement of F ep
2 .

– The bulk of heavy quarks is produced via the photon
gluon fusion mechanism [1,2] providing the possibil-
ity to constrain the gluon distribution g(y, µ2) in the
proton [3–5].

– By measuring differential distributions, the charm pro-
duction mechanism can be tested, and it can be stud-
ied whether and when the charm quark behaves like a
massless parton [4,5].

In order to estimate radiative corrections to heavy
quark production, we employ the well-known leading log
approximation (LLA) [6–9]. See also [10] where radiative
corrections to heavy flavour production have been studied
in the Weiszäcker-Williams approximation (WWA) using
hadronic variables. The O(α) (QED-)corrections to the
process e + g −→ e + c + c̄ are shown in Fig. 1 (not shown
are crossed and virtual diagrams). The main part of the
corrections comes from bremsstrahlung from the electron
line (plus corresponding virtual corrections), see a and b.
These two contributions are enhanced by a large collinear
logarithm Le = ln(Q2/m2

e). In the same way, calculating c,
d, and e, one gets logarithms Lc = ln(Q2/m2

c) which are
much smaller than Le because of the large charm mass
mc, compared to the electron mass me. For example, for
Q2 = 10 GeV2, one finds Le ≈ 17.5 � Lc ≈ 1.5 (mc = 1.5
GeV). Diagrams d and e do not contribute for another rea-
son: the photons are not resolved from the final state jets
in general. (Only a light intermediary quark in diagram c
could give rise for a collinear singularity, which would have
to be handled the same way as the corresponding collinear

a) b)

c) d) e)

Fig. 1. Real O(α) corrections to deep inelastic production of
heavy quarks via the process e + g −→ e + c + c̄. Not shown
are the corresponding crossed diagrams

gluon emission, leading to a negligible (at least in LLA)
modification of the parton distributions.) Thus, we only
take the leptonic corrections a and b (in O(α)-LLA) into
consideration.

The paper is organized as follows: In Sect. 2 the for-
mulae needed to calculate radiative corrections to neu-
tral current heavy quark production in O(α)-LLA are col-
lected. In Sect. 3 numerical results are presented. Finally,
the main results are briefly summarized in Sect. 4.

2 Formalism

We calculate the O(α) QED-corrections to deep inelastic
production of heavy quarks in leading log approximation
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(LLA) [7,8]. Following the formalism of [7], the cross sec-
tion for deep inelastic production of charm quarks via the
photon gluon fusion (PGF) mechanism (e+g → e+ c+ c̄)
reads:

dσ(ep → ecc̄X) =
∫ 1

0
dz1

∫ 1

0
dz2

∫ 1

0
dz3De/e(z1, Q

2)

×g(z2, µ
2)D̄e/e(z3, Q

2)
×dσ̂(e + g → e + c + c̄) . (1)

The functions De/e, D̄e/e contain the factorized mass sin-
gularities from the electron line and are, up to O(α), given
by [7]

De/e(x, Q2) = D̄e/e(x, Q2)

= δ(1 − x) +
(

αLe

2π

)
Pee(x) (2)

with

Le ≡ ln
Q2

m2
e

(3)

and the splitting function

Pee(x) =
[
1 + x2

1 − x

]
+

=
1 + x2

(1 − x)+
+

3
2
δ(1 − x). (4)

The (+)-distribution is defined by∫ 1

x

dz Pee(z) f(z) =
∫ 1

x

dz
1 + z2

1 − z
(f(z) − f(1))

−
∫ x

0
dz

1 + z2

1 − z
f(1) . (5)

De/e(z1, Q
2) can be interpreted as the probability of find-

ing an electron with momentum fraction z1 inside the in-
coming electron, D̄e/e(z3, Q

2) describes the fragmentation
of the scattered electron into the observed outgoing elec-
tron with momentum fraction z3, and g(z2, µ

2) is the gluon
density inside the proton. Finally, dσ̂ ist the cross section
of the underlying hard scattering subprocess.

The variables x, y and Q2 are reconstructed by the 4-
momentum p′

e of the observed electron and the 4-momenta
pe, p of the initial state electron and proton:

ql ≡ pe − p′
e, Q2

l ≡ −q2
l ,

yl =
p · ql

p · pe
, xl ≡ Q2

l

2p · ql
=

Q2
l

Syl
, (6)

where S ≡ (p + pe)2. In the same way, one defines for the
hard scattering process e(p̂e = z1pe) + g(p̂ = z2p) −→
e(p̂′

e = p′
e/z3) + c(pc) + X:

q̂ = p̂e − p̂′
e, Q̂2 = −q̂2 =

z1

z3
Q2

l ,

ŷ =
p̂q̂

p̂p̂e
=

z1z3 − 1 + yl

z1z3
, (7)

x̂ =
Q̂2

2p̂ · q̂
=

Q̂2

Ŝŷ
=

z1xlyl

z2(z1z3 − 1 + yl)
,

Ŝ = (p̂e + p̂)2 = z1z2S . (8)

Because we only use leptonic variables xl, yl, etc. , the
index l will be suppressed from now on.

In the following, we calculate the radiative corrections
to the photon gluon fusion (PGF) subprocess

e(p̂e) + g(p̂) −→ e(p̂′
e) + c(pc) + c̄(pc̄) (9)

and compare the results with the radiative corrections to
the charm excitation (CE) subprocess

e(p̂e) + c(p̂) −→ e(p̂′
e) + c(pc) (10)

where, in contrast to the PGF, the charm quark is treated
as an intrinsic (massless) parton of the proton. The lat-
ter process has been used by the H1 Collab. [11] in a re-
cent analysis of leptoproduction of D-mesons [1], employ-
ing some charm density c(x, µ2).

2.1 Inclusive case

2.1.1 Photon gluon fusion (PGF)

The hard cross section for the process (9) can be written
as:

d2σ̂

dx̂dŷ
=

4πα2Ŝ

Q̂4

[
(1 − ŷ)f2

(
x̂, Q̂2

)
+x̂ŷ2f1

(
x̂, Q̂2

)]
(11)

with the partonic structure functions [12–15]

fk(x̂, Q̂2, m2
c , µ

2) =
αs(µ2)

π

ξ̂

4π
e2
c c

(0)
k,g(x̂, Q̂2)

×θ(Ŵ 2 − 4m2
c), k = 2, L , (12)

f1(x̂, Q̂2, m2
c , µ

2) =
1
2x̂

(f2 − fL) , (13)

ξ̂

4π
c
(0)
2,g =

[
x̂

2
− x̂2(1 − x̂) + 2

m2
c

Q̂2
x̂2(1 − 3x̂)

−4
m4

c

Q̂4
x̂3

]
ln

1 + β̂

1 − β̂
+ β̂

[
4x̂2(1 − x̂)

− x̂

2
− 2

m2
c

Q̂2
x̂2(1 − x̂)

]
, (14)

ξ̂

4π
c
(0)
L,g = −4

m2
c

Q̂2
x̂3 ln

1 + β̂

1 − β̂

+2β̂x̂2(1 − x̂), (15)

where ec, mc are the charm quark charge and mass, respec-

tively, ξ̂ ≡ ξ(Q̂2) =
Q̂2

m2
c

, Ŵ 2 ≡ W 2(x̂, Q̂2) =
Q̂2(1 − x̂)

x̂
,

and β̂2 ≡ β2(x̂, Q̂2) = 1 − 4m2
c/Ŵ 2.

By insertion of (2), (11) into (1), one obtains the cross
section dσ = dσ0 + dσi + dσf . The Born cross section dσ0

is given by

d2σ0

dxdy
=

4πα2S

Q4

[
(1 − y)F2

(
x, Q2)

+xy2F1
(
x, Q2)] (16)
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with the leading order structure functions

F1(x, Q2, µ2, m2
c) =

∫ 1

ax

dz2

z2
g(z2, µ

2)

×f1(x/z2, Q
2, m2

c , µ
2), (17)

F2(x, Q2, µ2, m2
c) =

∫ 1

ax

dz2

z2
z2 g(z2, µ

2)

×f2(x/z2, Q
2, m2

c , µ
2), (18)

where a = 1 + 4m2
c/Q2. dσi,f contain the contribution

due to radiation of a collinear photon from the incoming
(initial state radiation, ISR) and outgoing electron (final
state radiation, FSR), respectively:

d2σi

dxdy
=

αLe

2π

∫ 1

zmin
1

dz1

[
1 + z2

1

1 − z1
(σ0(z1, 1) − σ0(1, 1))

]

+
αLe

2π
H(zmin

1 )σ0(1, 1), (19)

d2σf

dxdy
=

αLe

2π

∫ 1

zmin
3

dz3

[
1 + z2

3

1 − z3
(σ0(1, z3) − σ0(1, 1))

]

+
αLe

2π
H(zmin

3 )σ0(1, 1), (20)

with

σ0(z1, z3) =
∫ 1

zmin
2

dz2 g
(
z2, µ

2) ∂(x̂, ŷ)
∂(x, y)

d2σ̂

dx̂dŷ
, (21)

H(z) = −
∫ z

0
dx

1 + x2

1 − x

= 2 ln(1 − z) + z +
1
2
z2, (22)

and the Jacobian
∂(x̂, ŷ)
∂(x, y)

=
y

z2z3(z1z3 − 1 + y)
. (23)

The electromagnetic coupling is taken to be α ≡ α(Q2 =
m2

e) = 1/137.0361. The integration bounds

zmin
1 =

1 − y

1 − xy
+

4m2
c

S(1 − xy)
,

zmin
3 =

1 − y + xy

1 − 4m2
c/S

, (24)

zmin
2 (z1, z3) =

(
1 +

4m2
c

Q2

z3

z1

)
z1xy

1
z1z3 + y − 1

follow from the conditions Ŵ 2 ≥ 4m2
c , 0 ≤ zmin

2 (z1, z3) ≤
1. If no photon is radiated (z1 = 1, z3 = 1), one finds
the well-known expression zmin

2 (1, 1) = (1 + 4m2
c/Q2)x ≡

ax. In the kinematical region of small x, the bounds read
approximately: zmin

1 = zmin
3 = 1 − y + O(x) + O(m2

c/S).
It should be remarked that σ0 is related to the Born cross
section by d2σ0/dxdy = σ0(1, 1).

1 Using a running coupling α(Q2) according to (14) in [7],
taking effective quark masses [16] mu = md = 0.041, ms =
0.15, mc = 1.5, and mb = 4.5 GeV, instead of a constant α,
leads to negligible differences

2.1.2 Charm excitation (CE)

In the case of electron quark scattering, the radiative cor-
rections in LLA are known up to O(α2) [6–9,16]. For com-
parison with (19), (20), we use (22)–(29) in [7], with the
charm quark as the only massless parton (MP) in the ini-
tial state. Furthermore, contributions due to Z-exchange
can be neglected in the realm of Q2 ≤ 50 GeV2, i. e. , we
make the replacements Ac → e2

c , Bc → 0 (in (22)–(29)
in [7]). For the partonic structure functions, the simple
relations

f2(x̂, Q̂2) = e2
c δ(1 − x̂) , (25)

f1(x̂, Q̂2) =
1
2x̂

f2(x̂, Q̂2) (26)

hold, and one easily finds [7]

σ0(z1, z3) =
2πα2y

z1z2
3 ŷ3Ŝ

[1 + (1 − ŷ)2]e2
c

×
(
c(z̄2, Q̂

2) + c̄(z̄2, Q̂
2)

)
(27)

with

z̄2 =
z1xy

z1z3 + y − 1
, zmin

1 =
1 − y

1 − xy
,

zmin
3 = 1 − y(1 − x) . (28)

(Of course, (27) and (28) have to be inserted into (19) and
(20).)

Finally, we briefly discuss the Compton contribution
dσC to the radiative corrections which can be obtained
from (21) (Q0 = 200 MeV) and (29) in [7], only allow-
ing for the charm (or anti-charm) quark in the initial
state. Figure 2 displays the Compton contribution δC =
d2σC

dxdy
/

d2σ0

dxdy
for x = 10−2 (dashed line) and x = 10−3

(full line) using the CTEQ4L parton distributions [17].
For y . 0.7, δC is small and can be safely neglected for
experimentally relevant values of y [1].

2.2 z-differential case

In order to calculate radiative corrections to the z-diffe-
rential cross section d3σD/dxdydz, where z = p · pD/p · q,
the fragmentation of the charm quark into the observed
D-meson must be taken into consideration. Thus, it is
necessary to extend (1):

dσ(ep → eDX) =
∫ 1

0
dz1

∫ 1

0
dz2

∫ 1

0
dz3De/e(z1, Q

2)

×g(z2, µ
2)D̄e/e(z3, Q

2)

×
∫ 1

0
dz4Dc(z4)dσ̂. (29)

The hadronization of the outgoing charm quark with mo-
mentum pc into the observed D-meson with momentum
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Fig. 2. Compton contribution δC according to (29) in [7]
(Q0 = 200 MeV, considering only the (anti-)charm quark in
the initial state) with x = 10−3 (full line) and x = 10−2 (dashed
line), employing the CTEQ4L parton densities [17]

pD = z4pc is modeled by the fragmentation function
Dc(z4). Writing the partonic cross section differential in
ẑc = p̂·pc/p̂·q̂, the relations in (7) have to be accomplished
with

ẑc =
zyz3

z4(z1z3 + y − 1)
≡ z

z4
r, (30)

with r defined by

r ≡ y z3

z1z3 + y − 1
, (31)

which can be derived from the definitions of ẑc, z and q̂,
using pD = z4pc.

In analogy to the above discussion, we compare the
“massive” (PGF) with the “massless” (CE) corrections,
using a massless charm parton (MP).

2.2.1 Photon gluon fusion

The partonic cross section reads

d3σ̂

dx̂dŷdẑc
=

4πα2Ŝ

Q̂4

[
(1 − ŷ)f2

(
x̂, Q̂2; ẑc

)
+x̂ŷ2f1

(
x̂, Q̂2; ẑc

)]
, (32)

where the structure functions are given by2

f2(x, Q2; ζ) =
αs

π
e2
cx

[
1
4
BG

(
x, Q2, ζ, mc

)
+

3
4
BL

(
x, Q2, ζ, mc

)]
, (33)

fL(x, Q2; ζ) =
αs

π
e2
cx

1
2
BL

(
x, Q2, ζ, mc

)
, (34)

2 The corresponding expressions for general boson gluon fu-
sion can be found in [19]

with

BL
(
x, Q2, ζ, mc

)
= 4x

[
1 − x − x

mc
2

Q2

1
ζ(1 − ζ)

]
,

BG
(
x, Q2, ζ, mc

)
= −2 +

[
1 − 2x + 2x2

+4
mc

2

Q2 x(1 − x)
]

1
ζ(1 − ζ)

+2x2 mc
2

Q2

(
1 − 2

mc
2

Q2

)
1

(1 − ζ)2ζ2 ,

[15,18] and f1(x̂, Q̂2; ẑc)=
1
2x̂

[
f2(x̂, Q̂2; ẑc)−fL(x̂, Q̂2; ẑc)

]
.

The cross sections for ISR and FSR have the same
structure as in (19) and (20) with a z dependent function
σ0:

d3σi

dxdydz
=

αLe

2π

∫ 1

zmin
1

dz1

[
1 + z2

1

1 − z1
(σ0(z1, 1; z)

−σ0(1, 1; z))

]
+

αLe

2π
H(zmin

1 )σ0(1, 1; z), (35)

d3σf

dxdydz
=

αLe

2π

∫ 1

zmin
3

dz3

[
1 + z2

3

1 − z3
(σ0(1, z3; z)

−σ0(1, 1; z))

]
+

αLe

2π
H(zmin

3 )σ0(1, 1; z), (36)

with

σ0(z1, z3; z) =
∫ 1

zmin
2

dz2 g
(
z2, µ

2) (37)

×
∫ zmax

4

zmin
4

dz4
∂(x̂, ŷ, ẑc)
∂(x, y, z)

d3σ̂

dx̂dŷdẑc
Dc(z4) .

The Jacobian in (37) can easily be calculated as

∂(x̂, ŷ, ẑc)
∂(x, y, z)

=
∂(x̂, ŷ)
∂(x, y)

∂ẑc

∂z

=
y2

z2z4(z1z3 − 1 + y)2
. (38)

The integration bounds can be derived from the conditions

Ŵ 2 =
Q̂2(1 − x̂)

x̂
≥ 4m2

c , leading to (24), and ẑmin
c ≤ ẑc ≤

ẑmax
c with ẑ

max
min
c =

1 ± β(x̂, Q̂2)
2

[18], where β2(x̂, Q̂2) =

1 − 4m2
c/Ŵ 2, implying

zmax
4 = min

[
1,

zr

ẑmin
c

]
, (39)

zmin
4 = min

[
zmax
4 ,

zr

ẑmax
c

]
(40)

with r from (31). For Dc(z), we use a Peterson et al. frag-
mentation function [20]

Dc(z) = N
{

z
[
1 − z−1 − εc/(1 − z)

]2}−1
, (41)



I. Schienbein: Leading log radiative corrections to deep inelastic production of heavy quarks 679

normalized to
∫ 1
0 dzDc(z) = 1, i. e. ,

N−1 =
(εc

2 − 6εc + 4)
(4 − εc)

√
4εc − εc

2

×
{

arctan
εc√

4εc − εc
2

+ arctan
2 − εc√
4εc − εc

2

}

+
1
2

ln εc +
1

4 − εc
. (42)

2.2.2 Flavor excitation

In the subprocess e+c −→ e+c we have ẑc = p̂·pc/p̂·q̂ = 1,
following from pc = q̂ + p̂. Thus, one obtains the ẑc-
differential cross section by inserting the structure func-
tions

f2(x̂, Q̂2, ẑc) = e2
c δ(1 − x̂)δ(1 − ẑc) (43)

f1(x̂, Q̂2, ẑc) =
1
2x̂

f2(x̂, Q̂2, ẑc) (44)

into (11). Because of δ(1−ẑc) = z4δ(z4−rz) and ∂ẑc/∂z =
r/z4 one finds

σ0(z1, z3; z) = σ0(z1, z3) rDc(rz) (45)

with σ0(z1, z3) from (27) and r from (31).
Finally the z-differential corrections are given by (35)

and (36) with σ0 from (45) and the integration bounds

zmin
1 = max

[
1 − y

1 − xy
, 1 − y(1 − z)

]
, (46)

zmin
3 = max

[
1 − y(1 − x),

1 − y

1 − yz

]
. (47)

The second boundary in max[. . . , . . .] can be deduced from
0 ≤ rz ≤ 1.

Equation (35), (36) can easily be tested:

∫ 1

0
dz

d3σi,f

dxdydz

!=
d2σi,f

dxdy
, (48)

with d2σi,f/dxdy from (19), (20). The Compton contri-
bution will be neglected for the same reasons as in the
inclusive case.

3 Numerical results

As usual, the radiative corrections will be shown in form
of a correction factor δ defined by dσ = dσ0(1 + δ), i. e.,
δ = δi + δf + . . . with

δi,f (x, y) =
d2σi,f

dxdy
/

d2σ0

dxdy

x=0.01

y

δ

GRV94(LO)

mc=1.5 GeV

µ2=Q2+4mc
2

initial + final

x=0.001
x=0.0001
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Fig. 3. Radiative corrections to heavy quark production
(PGF) in O(α)-LLA, using the GRV94(LO) parton distribu-
tions [21] and the factorization scale µ2 = Q2 + 4m2

c with
mc = 1.5 GeV. (”initial” and “final” refers to initial and final
state radiation.)

δ

y

CTEQ4L

GRV94(LO)

mc=1.5 GeV

µ2=Q2+4mc
2

(initial + final) x=10-2
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Fig. 4. δ(x, y), using the GRV94(LO) [21] (full line) and
CTEQ4L parton densities [17] (dashed line) with x = 10−2

and x = 10−4, µ2 = Q2 + 4m2
c and mc = 1.5 GeV

or, in the z-differential case,

δi,f (x, y, z) =
d3σi,f

dxdydz
/

d3σ0

dxdydz
.

In all figures we use HERA centre-of-mass energies S =
4 · 27.5 · 820 GeV2.

Figure 3 shows the radiative corrections to heavy quark
production (PGF) for experimentally relevant values3 of
Bjorken-x [1] as a function of y according to (19) and

3 For a clean extraction of the gluon density it is necessary
to extend the x-range to x . 5 · 10−4 [5]
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Fig. 5. Left side: δ(x, y), for two different factorization scales
µ2 = Q2 + 4m2

c [3] (full line) and µ2 = 4m2
c [22] (dashed line)

(mc = 1.5 GeV). Right side: δ(x, y), using the charm masses
mc = 1.3, 1.5, 1.7 GeV (µ2 = 4m2

c).(PDF: GRV94(LO) [21].)

(20) using the GRV94(LO) parton distributions [21]. The
factorization scale has been chosen to be µ2 = Q2 + 4m2

c

[3] with mc = 1.5 GeV. For x = 10−2, the typical shape of
radiative corrections in leptonic variables can be seen, with
large corrections for y → 1, whereas for smaller x ≤ 10−3

the curves become more and more flat for y → 1.
The theoretical uncertainties due to different choices

of parton distributions, factorization scales, and charm
masses turn out to be small, as can be seen in Fig. 4 and
Fig. 5. One finds δ(CTEQ) − δ(GRV) < 0.02, δ(mc =
1.3) − δ(mc = 1.7) < 0.03 for relevant y ≤ 0.7, and
δ(µ2 = 4m2

c) − δ(µ2 = Q2 + 4m2
c) < 0.03, where the

scale µ2 = 4m2
c has been favored in [22]. This could be

expected because variations of µ, mc, or the parton dis-
tributions lead to rather similar changes in dσ0 and dσi,f ,
so that the quotient δ does not change too much.

In the recent analysis of deep inelastic charm produc-
tion by the H1 Collab. [1], the radiative corrections have
been calculated in O(α)-LLA with the HECTOR package
[16] using the charm excitation subprocess (F c

L = 0) and
the GRV92 parton distributions [23]. Furthermore, only
initial state radiation has been taken into consideration,
assuming the collinear final state photon not to be sepa-
rated from the outgoing electron [11], leading to small cor-
rections. Because PGF has been measured to be the dom-
inant (> 95%) charm production mechanism in the small
x (and Q2) range [1], it is necessary to check if the “mass-
less” corrections (δMP ) agree with the “massive” ones
(δPGF ). In Fig. 6 we compare the massive (µ2 = Q2+4m2

c ;
mc = 1.5 GeV) with the massless corrections due to ini-
tial state radiation. The experimentally relevant values of
Q2 [1] are indicated by dotted vertical lines. The conver-
sion of “masslessly corrected” (δMP ) data to “massively
corrected” (δPGF ) data can be performed by applying the

factor R ≡ (1 + δMP )/(1 + δPGF ) because of

dσ(PGF) = dσ(exp)
1

1 + δPGF

= dσ(MP)
1 + δMP

1 + δPGF ≡ dσ(MP)R .

For the (x, Q2) data points one finds |R − 1| = |δMP −
δPGF |/(1 + δPGF ) < 3%, i.e., the differences between
massless and massive radiative corrections lead to a small
increase (δMP > δPGF ) of the data. However, this differ-
ence is small enough to use the simpler charm excitation
subprocess for calculating the radiative corrections in the
inclusive case.

Of course, heavy quark production processes are ex-
clusive in the heavy quark momentum and on this more
differential level the photon gluon fusion and the charm
excitation processes are not compatible which can be seen,
e.g., from the different shapes of the xD = |p∗

D|/|p ∗
p | =

2|p ∗
D|/W distributions shown in the experimental analyses

[1,2] (Fig. 6, Fig. 1 resp.). We prefer to employ the lorentz-
invariant variable z = p · pD/p · q which approximately
transforms into xD in the γ ∗-p centre-of-mass system, fol-
lowing the argumentation in [1]. This can be easily seen by
calculating z in the γ ∗-p-CMS. One finds z = xD sin2 θ ∗/2
with4 θ ∗ = ∠(p ∗

p ,p ∗
D) ≈ π.

In Fig. 7 we show the z-differential radiative correc-
tions according to (35), (36), (37) (PGF, full line) and
(45) (MP, dashed line), where it has been integrated over
the kinematical range 10 GeV2 ≤ Q2 ≤ 100 GeV2, 0.01 ≤
y ≤ 0.7. The left hand side shows the correction factor
δi = dσi/dσ0 as well as the sum of initial and final state
radiation δi+δf . In all cases, we employed the GRV92(LO)
(massless) [23] and GRV94(LO) (massive) [21] parton dis-
tributions, in the massive case with mc = 1.5 GeV and
µ2 = Q2 + 4m2

c . For Dc a Peterson et al. fragmentation
function [20] with ε = 0.15 has been taken. To study the
dependence of δ on ε, we compare the radiative correc-
tions for two different choices of ε in Fig. 8. In the mas-
sive case the ε-dependence is obviously small, whereas
for massless corrections one finds big differences in the
steep region z . 0.4. Figure 7 reveals a rather big dif-
ference between massive and massless corrections for z .
0.5. For z → 1 only soft photon radiation is allowed, so
that the corrections factorize and become independent of
the underlying subprocess. On this more differential level
it is necessary to calculate the radiative corrections us-
ing the photon gluon fusion subprocess because of the
big deviations of the massless from the massive correc-
tions for z . 0.5. On the right side of Fig. 7 the z-
dependence of the cross sections dσ0,i,f is displayed. In-
tegration over 0 ≤ z ≤ 1 leads to the observed small
differences between massless and massive corrections be-
cause positive and negative contributions compensate each

4 p ∗
γ + p ∗

p = 0, p ∗
g,c = z2p ∗

p ⇒ p ∗
γ + p ∗

g,c = −(1 − z2)p ∗
p .

This means for the CE-subprocess: p ∗
γ + p ∗

c = p′ ∗
c = z4p ∗

D ⇒
θ ∗ = π and for the PGF: p ∗

γ + p ∗
g = p ∗

c + p ∗
c̄ ⇒ θ ∗ ≈ π

(the collinear configuration is dominant). Note that an angle
θ ∗ = 160◦ still yields sin2 θ ∗/2 = 0.97
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Fig. 6. Comparison of massive (solid line, µ2 =
Q2 + 4m2

c , mc = 1.5 GeV) and massless (dashed line)
radiative corrections δ (initial) for experimentally rel-
evant x [1] using the parton distributions GRV92(LO)
(MP) [23] and GRV94(LO) (PGF) [21]. The dotted
vertical lines indicate values of constant Q2 = 12, 25
or 45 GeV2

other. To get an impression of the effect of z-cuts, we
show in Fig. 9 the correction factor δi,f (x, y; zmin, zmax) =∫ zmax

zmin dz dσi,f

dxdydz /
∫ zmax

zmin dz dσ0

dxdydz for three z-integration
ranges, from top to bottom zmin = 0 ≤ z ≤ zmax = 1,
0.2 ≤ z ≤ 0.8, and 0.3 ≤ z ≤ 0.9 for x = 10−3. For
completeness, we used the GRV94/92(LO) parton distri-
butions [21], [23] for the massive (mc = 1.5 GeV, µ2 =
Q2 + 4m2

c) and massless corrections and a Peterson et
al. fragmentation function [20] with ε = 0.15. As can be
seen from Fig. 7, a cut z & 0.2 leads to the exclusion of
positive contributions of dσi,f , diminishing the radiative
corrections.

4 Summary

The O(α)-QED corrections to inclusive and z-differential
deep inelastic electroproduction of heavy quarks have been
calculated in the leading log approximation, using electron
variables. The results have been compared to the radiative
corrections in the MP scheme, where the charm quark is
assumed to be a massless parton in the proton. In the in-
clusive case, the differences between these two approaches
turned out to be negligible. However, the measurement
of heavy quark production is of course differential in the
momentum of the (observed) heavy quark, recommending
to perform the radiative corrections on the same differ-
ential level. Thus, we have considered the semi-inclusive
z-differential case, in which the massive corrections have
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Fig. 7. z-differential radiative corrections to massive (mc =
1.5 GeV, µ2 = Q2 + 4m2

c) (full line) and massless (dashed)
charm production, integrated over the kinematical range
10 GeV2 ≤ Q2 ≤ 100 GeV2, 0.01 ≤ y ≤ 0.7, using the par-
ton distributions GRV92(LO) (massless) [23] and GRV94(LO)
(massive) [21] and a Peterson et al. fragmentation function [20]
with ε = 0.15

to be applied, i.e., using the photon gluon fusion subpro-
cess, because for 0.2 . z . 0.5 the massless corrections
differ from the massive ones by about ≈ 40%–10%. Fur-
thermore, we studied the effect of cuts on the z-integration
range. A cut z & 0.2, e.g., excludes positive contributions
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Fig. 8. As Fig. 7 (lhs) with ε = 0.15 (full line) and ε = 0.06
(dashed line). The contribution due to initial state radiation is
shown (lhs) as well as the sum of initial and final state radiation
(rhs)

PGF
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Fig. 9. δ(x, y; zmin, zmax) (defined in the text) in dependence
of y for x = 10−3 and three choices of zmin, zmax: From top
to bottom 0 ≤ z ≤ 1, 0.2 ≤ z ≤ 0.8 and 0.3 ≤ z ≤ 0.9.
The massive corrections have been calculated employing the
GRV94(LO) parton distributions [21] and the factorization
scale µ2 = Q2 +4m2

c with mc = 1.5 GeV. For the massless cor-
rections we have taken the GRV92(LO) parton distributions
[23]. In all cases we employed a Peterson et al. fragmentation
function [20] with ε = 0.15

of dσi,f , so that the (zmin ≤ z ≤ zmax)-integrated correc-
tions are smaller as in the fully inclusive, i.e., (0 ≤ z ≤ 1)-
integrated case.
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